Fractional Derivative Reconstruction of Forced Oscillators
نویسندگان
چکیده
Fractional derivatives are applied in the reconstruction, from a single observable, of the dynamics of a Duffing oscillator and a two-well experiment. The fractional derivatives of time series data are obtained in the frequency domain. The derivative fraction is evaluated using the average mutual information between the observable and its fractional derivative. The ability of this reconstruction method to unfold the data is assessed by the method of global false nearest neighbors. The reconstructed data is used to compute recurrences and fractal dimensions. The reconstruction is compared to the true phase space and the delay reconstruction in order to assess the reconstruction parameters and the quality of results.
منابع مشابه
A New Modification of the Reconstruction of Variational Iteration Method for Solving Multi-order Fractional Differential Equations
Fractional calculus has been used to model the physical and engineering processes that have found to be best described by fractional differential equations. For that reason, we need a reliable and efficient technique for the solution of fractional differential equations. The aim of this paper is to present an analytical approximation solution for linear and nonlinear multi-order fractional diff...
متن کاملFractional dynamics of coupled oscillators with long-range interaction.
We consider a one-dimensional chain of coupled linear and nonlinear oscillators with long-range powerwise interaction. The corresponding term in dynamical equations is proportional to 1//n-m/alpha+1. It is shown that the equation of motion in the infrared limit can be transformed into the medium equation with the Riesz fractional derivative of order alpha, when 0<alpha<2. We consider a few mode...
متن کاملCoupled oscillators with power-law interaction and their fractional dynamics analogues
The one-dimensional chain of coupled oscillators with long-range power-law interaction is considered. The equation of motion in the infrared limit are mapped onto the continuum equation with the Riesz fractional derivative of order α, when 0 < α < 2. The evolution of soliton-like and breather-like structures are obtained numerically and compared for both types of simulations: using the chain of...
متن کاملOscillation of Solutions to Nonlinear Forced Fractional Differential Equations
In this article, we study the oscillation of solutions to a nonlinear forced fractional differential equation. The fractional derivative is defined in the sense of the modified Riemann-Liouville derivative. Based on a transformation of variables and properties of the modified Riemann-liouville derivative, the fractional differential equation is transformed into a second-order ordinary different...
متن کاملIntroduction to the Concepts and Applications of Fractional and Variable Order Differential Calculus
Understanding the concepts of fractional and variable order differential calculus requires a willingness to depart from the traditional physical interpretations through which calculus is generally understood. Fractional calculus involves the computation of a derivative or integral of any real order, rather than just an integer. Several definitions for calculating a real order derivative or inte...
متن کامل